Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Environ Sci ; 37(3): 266-277, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38582991

RESUMEN

Objective: The purpose of this study was to investigate the bacterial communities of biting midges and ticks collected from three sites in the Poyang Lake area, namely, Qunlu Practice Base, Peach Blossom Garden, and Huangtong Animal Husbandry, and whether vectors carry any bacterial pathogens that may cause diseases to humans, to provide scientific basis for prospective pathogen discovery and disease prevention and control. Methods: Using a metataxonomics approach in concert with full-length 16S rRNA gene sequencing and operational phylogenetic unit (OPU) analysis, we characterized the species-level microbial community structure of two important vector species, biting midges and ticks, including 33 arthropod samples comprising 3,885 individuals, collected around Poyang Lake. Results: A total of 662 OPUs were classified in biting midges, including 195 known species and 373 potentially new species, and 618 OPUs were classified in ticks, including 217 known species and 326 potentially new species. Surprisingly, OPUs with potentially pathogenicity were detected in both arthropod vectors, with 66 known species of biting midges reported to carry potential pathogens, including Asaia lannensis and Rickettsia bellii, compared to 50 in ticks, such as Acinetobacter lwoffii and Staphylococcus sciuri. We found that Proteobacteria was the most dominant group in both midges and ticks. Furthermore, the outcomes demonstrated that the microbiota of midges and ticks tend to be governed by a few highly abundant bacteria. Pantoea sp7 was predominant in biting midges, while Coxiella sp1 was enriched in ticks. Meanwhile, Coxiella spp., which may be essential for the survival of Haemaphysalis longicornis Neumann, were detected in all tick samples. The identification of dominant species and pathogens of biting midges and ticks in this study serves to broaden our knowledge associated to microbes of arthropod vectors. Conclusion: Biting midges and ticks carry large numbers of known and potentially novel bacteria, and carry a wide range of potentially pathogenic bacteria, which may pose a risk of infection to humans and animals. The microbial communities of midges and ticks tend to be dominated by a few highly abundant bacteria.


Asunto(s)
Ceratopogonidae , Microbiota , Garrapatas , Animales , Humanos , Garrapatas/microbiología , Ceratopogonidae/genética , Filogenia , ARN Ribosómico 16S/genética , Estudios Prospectivos , Coxiella/genética
2.
Emerg Microbes Infect ; 12(1): e2192816, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36939609

RESUMEN

Emerging zoonoses of wildlife origin caused by previously unknown agents are one of the most important challenges for human health. The Qinghai-Tibet Plateau represents a unique ecological niche with diverse wildlife that harbours several human pathogens and numerous previously uncharacterized pathogens. In this study, we identified and characterized a novel arenavirus (namely, plateau pika virus, PPV) from plateau pikas (Ochotona curzoniae) on the Qinghai-Tibet Plateau by virome analysis. Isolated PPV strains could replicate in several mammalian cells. We further investigated PPV pathogenesis using animal models. PPV administered via an intraventricular route caused trembling and sudden death in IFNαßR-/- mice, and pathological inflammatory lesions in brain tissue were observed. According to a retrospective serological survey in the geographical region where PPV was isolated, PPV-specific IgG antibodies were detected in 8 (2.4%) of 335 outpatients with available sera. Phylogenetic analyses revealed that this virus was clearly separated from previously reported New and Old World mammarenaviruses. Under the co-speciation framework, the estimated divergence time of PPV was 77-88 million years ago (MYA), earlier than that of OW and NW mammarenaviruses (26-34 MYA).


Asunto(s)
Arenaviridae , Lagomorpha , Animales , Humanos , Ratones , Arenaviridae/genética , Filogenia , Estudios Retrospectivos , Tibet , Animales Salvajes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...